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Analysis of Distributed-Lumped Strip
Transmission Lines

TADAHIKO SUGIURA

Abstract—A calcnlation method for obtaining characteristic im-
pedances and phase velocities of striplines, which are regarded as
consisting of distributed-lumped elements such as so-called wiggly
lines, is presented with numerical results. The numerical calculations
have been carried out for a) single stripline with slots at the outer
edges, b) coupled stripline with rectangular wiggling, and ¢) coupled
stripline with slots at the outer edges. Experimental work has also
been accomplished to verify the present method. Results show good
agreement with calculations.

1. INTRODUCTION

ECENTLY, stripline circuits have become widely used
Rat microwave frequencies, in accordance with micro-
wave integrated circuit developments. Parallel coupled
striplines are especially useful for realizing filters, directional
couplers, and other microwave circuits.

In an ordinary coupled line, shown in Fig. 1(a), the phase
velocities of the even and odd modes differ because of the
inhomogeneity of the ambient medium. The difference in the
two velocities usually causes undesired degradation of
the circuits. Podell has solved this problem by introducing
the wiggling technique [1]; that is, wiggling the coupled
edges as shown in Fig. 1(b). Due to the different distributions
of the even and odd mode currents, it is possible to raise
the odd mode inductance more than the even mode induc-
tance by the wiggling technique. Generalizing this idea,
deRonde has shown that a tightly coupled line can be
realized by slotting the outer edges of the wiggly line, as
shown in Fig. 1(c) [2]. These lines can be regarded as
consisting of distributed-lumped elements. The inductance
or the capacitance of a stripline may be widely varied by
applying the above-mentioned distributed-lumped
technique. ,

For practical applications, however, tedious cut-and-try
experiments are needed to obtain the desired value, because
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Fig 1. Strip configuration for various coupled lines: (a) ordinary line,
(b) and (c) distributed-lumped lines.

available experimental data are very scarce and no quantita-
tive analysis has been reported for these lines. This paper
presents a calculation method to obtain the characteristic
impedance and the phase velocity of the distributed-lumped
striplines. Numerical results obtained with the aid of a
digital computer are compared with experimental data.

II. THEORY

A. General Considerations

The distributed-lumped stripline has a periodic structure,
as shown in Fig. 2. On the assumption that one unit section
of the periodic structure is much shorter than the
wavelength, static theory can be applied for determining the
inductance and the capacitance per unit section, because
the voltage and the current are regarded as constant over
the unit section. If the inductance and the capacitance are
obtained, the characteristic impedance and the phase velo-
city are readily calculated, according to ordinary transmis-
sion line theory. Accordingly, the problem is reduced to
calculations of the inductance and the capacitance per unit
section.

Although various types of line structure can be considered
in distributed-lumped lines, the calculation model chosen is
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one unit secflon

%%/ZZ

Fig. 2. Perniodic structure in distributed-lumped line and its equivalent
circuit.

Fig. 3. Distributed-lumped stripline calculation model.

as shown in Fig. 3, where the following three restrictions are
set to simplify the analysis. a) The line is a shielded
microstrip with an infinitely thin strip conductor. b) The line
is symmetrical about the x-y plane (therefore z = kd planes,
where k = integer, and d = length of a unit section). ¢) The
strip configuration of a unit section can be partitioned into
rectangles.

B. Capacitance Calculation

Letting ., and ¥, represent the electrostatic potentials
in regions I and II in Fig. 3, respectively, ¥, and ¥, are
given by

Vo = z Z A, sm—~co i
m=1 n=0 d
- sinh K, (hy + By — y) (1a)
Z Z B,.. smr—n—COSTSlnh kusy (1b)
m=1n=0
where
mn nw
= 7]+ [™F
mn a + d

and A4,, and B, are unknown coefficients. Since total
electrostatic energy U, stored in the unit section, is given by
3 |, £ - D du, substituting (1a) and (1b) into this expression
gives

n)kmn

ox\&

uMg

in
( . sinh 2k,,,h, + &, B2, sinh 2k,,.h,) (2)
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where
_ 1 (n+#0)
Pln) = (n=0).

In order to eliminate unknown coefficients 4,,, and B,,,
the following boundary conditions at y = h, are used

!//el = l/’22 (3a)
N, oy,
€, al/,; €, al//yl = p.(x,2) (3b)

where p, is the electric charge distribution at y = h,. There-
fore, p, = 0, except on the strip conductor. By using (1a),
(1b), (3a), and (3b), 4,,, and B,,, can be expressed by p,. The
results are then substituted into (2). Total electrostatic
energy U, is now rewritten as

2 [ee] e e
6 a mzl nZO Ge
(>,2) sin " cos N2 dx dz ’ “)
pe a d
where
Ge(m,n) - m;T (81 COth kmnhl + 82 COth kmnhz)_ 1

Capacitance per unit section is given by

_9 ¢
VT2,

()

where Q is the total electric charge on the strip and given by

d .a

0= J. jo pelx.2) dx dz.

0

(6)

Therefore, if unknown charge distribution p, is obtained,
capacitance is calculated from (4), (5), and (6).

C. Inductance Calculation

Calculation of the inductance can be made by the same
procédure as that for calculating capacitance. For capaci-
tance calculation, the whole region of the unit section has
been divided into air and substrate layers, wherein the
electrostatic potentials are individually determined. Since
each layer is simply connected and has no current in it; the
magnetostatic potentials, denoted by ¥,,, and ¥ ., can also
be defined [3] and calculated as follows:

7
0s 7% cos " cosh Kpn(By + hy — y)
a

d
(7)

||M8

‘pmlz 2

[ee] a

Y Z D,,, cos 7 cos 7 Z cosh kpny

where C,, and D,, are the unknown coefficients to be
eliminated. Taking H = —,, into consideration, the total

lpml = (7b)

m=1 n=
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magnetostatic energy U, stored within the unit section is
given by

Up=T¢ % 3 PloVoun
=1 n=

m=

- (1, CZ, sinh 2k, h, + u, D2, sinh 2k,,h,).  (8)

At the boundary between the air and the substrate layers,
the normal component of the magnetic flux density is
continuous. Thus, at y = h,,

6‘//m1 . 6‘//m2 .
al/’ml —
131 ay - pm(x9z) (9b)

where p,, is the normal component of the magnetic flux
density. This can be also recognized, in comparison to the
electrostatic case, as magnetic charge distribution of a
hypothetical magnetic dipole layer at y = h,. Since the
normal component of the magnetic flux density cannot exist
on the conductor surface, g,, = 0 on the strip conductor.
Unknown coefficients C,,, and D,,, can be eliminated from
(8) by using (9a) and (9b)

2 w0 K
" Eg mgl n;o GM(m’n)
4 .a mnx  nnz 2
. j f Pmlx,2) cos ——cos ——dx dz } (10)
0 Yo a d
where
G,(mn) = (lcothk h+1 th k h)
m\/7, mn —CO mn
( )kmn ! Ha 2
Inductance per unit section is given by
® @
== 1u
L I 2vu, (11)

where @ is the total magnetic flux interlinking the strip
conductor. Since the magnetic flux across one side of the
strip conductor is equal in magnitude and opposite in sign to
that across the other side

®= '[ Js' Pu(x,2) dx dz (12)

where region S’ is one side of the strip conductor at y = h.,.

D. Charge Distribution Determination

Charge distributions p, and p,, are still unknown. An
approximate charge distribution, however, can be
determined by Rayleigh-Ritz’s procedure [4]. Although
actual charge distribution may be very complex, the approx-
imate charge distribution will give good results, since the
variational principle is utilized [5].

In the case of capacitance calculation, electric charge
distribution is expressed in terms of known basis functions f;,
as follows:

’ ) K

Y % filx.z)

k=1

plz) = (13)
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where a, are unknown coefficients that must be determined.
Thomson’s theorem states that, under the condition of total
charge being constant, the charges residing on conductors
will distribute themselves in such a way that the energy is
minimized [5]. Thus the functional to be minimized is given
by

F=U,+AQ-1) (14)

where Ais the Lagrangian multiplier and condition Q = 1is
set to simplify (5) (capacitance calculation). In order to
minimize F with respect to each o, and A, all partial
derivatives 0F /0oy, and 0F/dA are set equal to zero. As a
result, the following set of K + 1 inhomogeneous linear
equations is obtained

A_11 A_1K B_1 % 0
: : : : 15
Ay Axx Bg 5 ( )
B, By, 0 2 1
where
A= 3 3 Gifmn)
M ad m=1 n=0 eV
d ,a
I jﬁ(xz)sm@c Sy
0o Yo a d
d .a
: “ j filx.z) sin T cos EE gx dz} (16a)
0 Y0 a d

d

B, = j (16b)

0

J.Oa filx,z) dx dz.

Thus the approximate charge distribution is determined by
solving the linear equations for «; and A with the aid of a
digital computer.

Accuracy is improved by increasing the number of basis
functions and by solving a larger size matrix. If the number
of basis functions is fixed, accuracy depends on how well the
basis functions are able to approximate the actual charge
distribution. Therefore, the choice of basis functions is
important, from the standpoint of calculation efficiency.

In practical calculations, basis functions are chosen in the
following manner. The whole region on a strip conductor is
appropriately partitioned into rectangular subregions, as
shown in Fig. 4. In each subregion, the charge distribution is
independently expanded in a power series with respect to x
and z. For example, in the case of Fig. 4, the charge
distribution is cxpresscd as

Z pel X, Z (1 7a)
- I |

Palx,2) = i; j; o1 (on subregion [)
0 (otherwise).' (17b)

Since the term number of the power series is independently
selected in each subregion, it is possible to remove the
unnecessary higher terms for a subregion, where the charge
distribution varies slowly and can be expressed without
higher terms.
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Fig. 4. Region S partitioned into two subregions.

Due to this choice of basis functions, the double integral in
(16a) is reduced to the product of two single integrals of the
following form:

Jx"‘l sin 7 gy j 271 cos T gz,
a d

This can be easily calculated in analytic form. Moreover, the
above integral decays as fast as (mn)~! for large m and »;
therefore, the double summation in (16a) decays as fast as
(m*n®,/m? + n*)~ . Thus the matrix elements in (15) are
obtained after truncating at some finite term numbers M
and N.

For the inductance calculation, the approximate mag-
netic charge can also be determined in the same manner.

III. NUMERICAL RESULTS

A. Single Stripline with Slots at Outer Edges

For practical applications, the distributed-lumped lirie
with a single strip conductor is not as important as that with
coupled conductors, but experimental work on the former is
much easier than that on the latter, because the single
stripline has only one fundamental mode. Therefore, the
calculation has been carried out in order to compare
calculated results with measured results. The calculated line
physical structure is shown in Fig. 5(a), where the relative
dielectric constant of ten, three in the alumina substrate, has
been determined by the measurement described in [7].
Because of the symmetry, calculation has been carried out
for only one half side of the line. The previously described
subregions are also shown in Fig. 5(a).

To examine the accuracy, the capacitance values for
increasing the number of basis functions have been cal-
culated. Since the strip conductor is partitioned into two
subregions, dnd the term numbers of the power series in the
two subregions are chosen to be equal, the matrix size
becomes 21J + 1. The result is shown in Fig. 6. The cal-
culated capacitance becomes larger when increasing the
term number of the power series, because the variational
principle is utilized [7]. However, for a large number of
the power series, the increase in capacitance is much smaller
than that for a small number. For example, the capacitance
increases 5.46 percent when increasing the term numbers
fromI=J=1tol=J=2151percentfrom] =J =2to
I=J =3, and 0.54 percent from I=J =310 I=J=4
Therefore, term numbers I and J are set equal to three for
capacitance calculation, considering calculation efficiency.
The accuracy, in this case, may be estimated within a few
percent.

For inductance calculation, the whole region where the
magnetic charge exists is partitioned into three subregions,
as shown in Fig. 5(a). In subregions 2 and 3, term numbers I
and J are also set equal to three. In subregion 1, I is set equal
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Fig. 5. Calculated distributed-lumped  stripline (b, =5, hy=1,
&, =103, and &,, = u,, = p,, = 1): (a) single stripline with slots at
outer edges, (b) coupled stripline with rectangular wiggling, and (c)
coupled stripline with slots at outer edges.

13
Peas = 3 3 ay x'' 21!
in1 )=

33

32

31

30

i
NUMBER OF TERMS I

CAPACITANCE PER UNIT SECTION (nF}

Fig. 6. Calculated capacitance when increasing power series term
number.

to three, but J is set equal to one. This implies that the
variation in the z direction is neglected, because the actual
magnetic charge in subregion 1 probably distributes almost
uniformly in the z direction. The matrix size in this case
becomes 22. These calculating conditions are summarized in
Table L.

The calculated results for the characteristic impedance are
shown in Fig. 7 with experimental results, obtained by using
a time-domain reflectometer. Fig. 7 shows that the measured
impedances are somewhat higher, but their variation ten-
dency shows good agreement with the calculated one. The
left-end part of each solid line in Fig. 7 shows the calculated
result for the w; = w, stripline or the uniform line. That
value is coincident with the result calculated by applying a
two-dimensional model [8]. Therefore, it can be recognized
that differences between calculated and measured im-
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Fig. 8. Relative phase velocity of single stripline with slots at outer edges.

TABLE 1
CALCULATING CONDITIONS FOR SINGLE STRIPLINE WITH
Srors AT OUTER EDGES

region I J
1 3 1
Magnetic charge 2 3 3
3 3 3
4 3 3
Electric charge
5 3 3
Field M=200, N=190

Computation time 3 min./structure

pedances are mainly caused by measuring inaccuracies
encountered in the experiment.

The result for the relative phase velocity is shown in Fig. 8.
The experiment in this case has been accomplished by
measuring the guide wavelength at 2.0 GHz by the slotted
line method. Calculated results in Fig. 8 show good agree-
ment with the measured results, excepting that the measured
values are slightly lower when the difference between w, and
w, is relatively large.

B. Coupled Stripline with Rectangular Wiggling

Although only single striplines were treated in the
previously described analysis, it can be also applied for
coupled lines by using the matrix forms of the capacitance
and inductance [10]. The ordinary wiggly line, which is now
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Fig. 10. Relative phase velocity of coupled stripline with rectangular
wiggling.

TABLE II
CALCULATING CONDITIONS FOR COUPLED STRIPLINE
WITH RECTANGULAR WIGGLING

region I J
1 6 1
Magnetic charge 4 3 3
5 3 3
N 2 3 3
Electric charge

3 3

Field M=300, N=29

Computation time 15 min,/structure

extensively used for the directional coupler, has atriangular
strip configuration, as shown in Fig. 1(b). The calculation for
such a line, however, is very complex, because the double
integrals in (16a and b) cannot be reduced to single integrals.
Thus the rectangular wiggly line shown in Fig. 5(b) has been
chosen as an example. The calculation in this case was also
carried out for only half of the line, because the strip
configuration has odd symmetry. The calculating condi-
tions, such as the term numbers of power series in the
subregions, are summarized in Table IL

The results are shown in Figs. 9 and 10. Fig. 10 shows that
the decrease in odd mode velocity, when increasing the
wiggling swing, is much steeper than that of the even mode
one, and that both mode velocities can be coincided by
suitable choice of the wiggling swing. It also shows that the
tighter the coupling, the steeper the decrease in the odd
mode velocity. Taking the current distribution of each mode
into consideration, these results are quite reasonable.
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TABLE III
CALCULATING CONDITIONS FOR COUPLED STRIPLINE
WITH SLOTS AT OUTER EDGES

region I J
1 3 1
2 3 3
Magnetic charge
3 3 3
6 3 1
4 3 3
Electric charge
3 3
Field M=300, N=19

Computation time 10 min./structure

a ™ S=02mm
‘NS $+04 e
S %0, |
W
g &0 Fo
8 EVEN- MODE
: % ~~-—— ODD-MODE
2
[8]
= ks
& $=a6mm| -~
g_ oI 18=4 ===
g $02 e 4
30
© oz 04 08 as

SLOT DEPTH r (mm)

Fig. 11. Characteristic impedance of coupled stripline with slots at outer
edges.
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Fig. 12. Relative phase velocity of coupled stripline with slots at outer
edges.

On the other hand, Fig. 9 shows that the characteristic
impedance increases with increases in the wiggling swing.
Therefore, it is concluded that the decrease in the phase
velocity is mainly due to raising the inductance, rather than
raising the capacitance.

C. Coupled Stripline with Slots at Outer Edges

Calculated results for the coupled line with slots at the
outer edges, as shown in Fig. 5(c), are presented. In this type
of line, conversely to the wiggly line, the differences of
both the characteristic impedance and the phase velocity
between two modes are considered to be increased, because
of the raising effect of the even mode inductance. Therefore,
tightly coupled lines or lines with a large difference in mode
velocities, which are also utilized in directional couplers [9),
may be realized.
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The calculating conditions are summarized in Table II1.
The results for the characteristic impedance and the relative
phase velocity are shown in Figs. 11 and 12, respectively. The
result in Fig. 11 shows that the impedance difference be-
tween two modes is certainly increased, but this increase is
much slighter than expected. Also, in Fig. 12, the increase in
velocity difference is unrecognizably slight. These results
imply that the current distribution on the outer edges of the
strips is still relatively large, even in the odd mode. There-
fore, narrower slots are necessary to effectively raise the even
mode inductance.

IV. CoNCLUSIONS

An analysis of the calculation of the characteristic im-
pedances and the phase velocities of the distributed-lumped
striplines has been described with numerical results. The
analysis is based on static theory, on the assumption that the
one unit section of the line is much shorter than
the wavelength. The present method is novel, in that
the capacitance and inductance can be calculated by using
the same procedure.

Numerical calculations have been carried out for a)single
stripline with slots at the outer edges, b) coupled stripline
with rectangular wiggling, and c) coupled stripline with slots
at the outer edges. In order to verify the present method,
experimental work also has been accomplished for case a)
lines. Results show good agreement with calculations.

For numerical calculations, a digital computer,
NEAC-2200 model 500 (NEC), was used.
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